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Introduction

Figure 1: Block diagram of the system with Q-filter-based DOB (sky-blue dashed block).

The standard structure of the Q-filter-based DOB and the closed-loop system are depicted in Figure 1.
In the figure, P(s) and Pn(s) represent the real plant and its nominal model, respectively, C(s) is a proper
(implementable) controller which is usually designed a priori for Pn(s), and Q(s; τ) is a stable low-pass
filter called Q-filter which has the form

Q(s; τ) =
ck(τs)

k + ck−1(τs)
k−1 + · · ·+ c0

(τs)l + al−1(τs)l−1 + · · ·+ a1(τs) + a0

=:
NQ(s; τ)

DQ(s; τ)
,

where the real positive τ determines the time constant or the bandwidth and a0 = c0 for the unity dc gain.
DO-DAT helps you design the Q-filter for robust stability of the closed-loop system against a given

variation of uncertain parameters. This article is the instruction manual of DO-DAT. For convenience, it is
considered that

• C(s) = 2/(s+ 4),

• Pn(s) = 5/(s− 2),

• P(s) ∈ P := {β0/(s+ α0) : 4 ≤ β0 ≤ 10, −10 ≤ α0 ≤ 10}

in the rest of this article.
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0 Unified function

0.1 DO_DAT.m

[Q, Qcanon , supTau] = DO_DAT(sysEnv , ‘exact ’)
[Q, Qcanon , supTau] = DO_DAT(sysEnv , ‘approx ’, res)
[Q, Qcanon , supTau] = DO_DAT(sysEnv , ‘approx ’, res , ‘manual ’, udQcanon)
[Q, Qcanon , supTau] = DO_DAT(sysEnv , ‘approx ’, res , ‘r.degreeOfQ ’, n )
[Q, Qcanon , supTau] = DO_DAT(sysEnv , ‘approx ’, res , ‘r.degreeOfQ ’, n,

‘rhoRoots ’, LHP roots)

This function returns Q as a recommended transfer function model Q(s; τ) that robustly stabilizes the
closed-loop system with DOB, Qcanon as a transfer function model Q(s; 1) with a constant numerator that
robustly stabilizes the fast dynamics of the closed-loop system, and supTau as the supremum τ∗ such that
for all 0 < τ < τ∗, the closed-loop system with the DOB designed under Q(s; 1) is robustly stable.

• sysEnv is expected to be the output of the function setup_sys in the page 4.

• For the option exact, at least 2018a and Symbolic Math Toolbox are required and the output supTau
becomes the (almost, in the sense of minor numerical errors) exact value of the supremum τ∗.

• For the option approx, the output supTau becomes an approximate value of the supremum τ∗. In
this case, the resolution res must be entered as a positive integer.

• For the option manual, the user-defined Q(s; 1) udQcanon that robustly stabilizes the fast dynamics
of the closed-loop system must be entered in the form of a transfer function model.

• For the option r.degreeOfQ, the desired relative degree of Q(s; 1) n must be entered as a positive
integer.

• For the option rhoRoots, n−1 (≥ 1) number of stable roots (that lie on the left-half plane) must be
entered in the form of a row vector. Refer to the page 5 for detailed explanation of the option.

Figure 2, 3, and 4 shows the output of the function DO_DAT for three different cases.

Figure 2: The output of the function DO_DAT for the option ‘exact’.
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Figure 3: The output of the function DO_DAT for the option ‘manual’.

Figure 4: The output of the function DO_DAT for the option ‘r.degreeOfQ’ and ‘rhoRoots’.
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1 Setup

1.1 setup_sys.m

sysEnv = setup_sys(N, D, P_n , C)

This function returns a structure variable sysEnv that contains the information about the system envi-
ronment, such as the nominal plant Pn(s), the controller C(s), and the set of uncertain plants P, that will
be used later in designing the DOB.

• N and D represent the numerator and denominator of a given set of uncertain plants P, respectively,
and they must be entered in the form of a cell that contains both upper and lower bounds of all the
coefficients as follows.

N = {[4, 10]};
D = {1, [-10, 10]};

• The nominal plant P_n and the controller Cmust be entered in the form of a transfer function model
as follows.

P_n = tf(5, [1, -2]);
C = tf(2, [1, 4]);

The output sysEnv also contains the information about the stability of the nominal closed-loop system
and minimum phaseness of a given set of uncertain plants. The field nominalStab is 1 if the nominal
closed-loop system is stable or 0 otherwise. The field minPhase is 1 if a given set of uncertain plants does
not contain any non-minimum phase systems or 0 otherwise. Figure 5 shows the output of the function
setup_sys.

Figure 5: The output of the function setup_sys.
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2 Design of Coefficients of Q-filter

2.1 gen_Qcanon.m

Qcanon = gen_Qcanon(sysEnv , n)
Qcanon = gen_Qcanon(sysEnv , n, ‘rhoRoots ’, LHP roots)

This function returns a transfer function model Q(s; 1) Qcanon with a constant numerator a0 that
robustly stabilizes the fast dynamics of the closed-loop system. In other words, the output of this function

Q(s; 1) =
NQ(s; 1)

DQ(s; 1)
=

a0
sρ(s) + a0

guarantees that the characteristic polynomial of the fast dynamics

DQ(s; 1) +

(
lim
s→∞

P(s)

Pn(s)
− 1

)
NQ(s; 1) = sρ(s) + a0 lim

s→∞

P(s)

Pn(s)

is Hurwitz for all P(s) ∈ P.

• sysEnv is expected to be the output of the function setup_sys.

• The desired relative degree of Q(s; 1) (i.e., the degree of DQ(s; 1)) n must be entered as a positive
integer.

• For the option rhoRoots, n−1 (≥ 1) number of stable roots (that lie on the left-half plane) must be
entered in the form of a row vector. If the option is not used, ρ(s) is set as (s+ 1)n−1.

Figure 6 shows the output of the function gen_Qcanon for two different cases.

Figure 6: The output of the function gen_Qcanon.
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2.2 isFastDynamicsStable.m

fastDynamicsStab = isFastDynamicsStable(sysEnv , udQcanon)

This function returns a logical output fastDynamicsStab that equals to 1 if the fast dynamics of the
closed-loop system is robustly stable or 0 otherwise.

• sysEnv is expected to be the output of the function setup_sys.

• The user-defined Q(s; 1) udQcanon must be entered in the form of a transfer function model and
thus, it can be entered as the output of the function gen_Qcanon (Of course, this function will return
1 in that case.).

Figure 7 shows the output of the function isFastDynamicsStable for three different cases.

Figure 7: The output of the function isFastDynamicsStable.
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3 Determination of Bandwidth of Q-filter

3.1 isValidTau.m

validity = isValidTau(sysEnv , udQcanon , tau)

This function returns a logical output validity that equals to 1 if the closed-loop system with the DOB
designed under given Q(s; 1) and τ is robustly stable or 0 otherwise.

• sysEnv is expected to be the output of the function setup_sys.

• The user-defined Q(s; 1) udQcanon that robustly stabilizes the fast dynamics of the closed-loop sys-
tem must be entered in the form of a transfer function model.

• tau must be entered as a positive real number.

Figure 8 shows the output of the function isValidTau for two different cases.

Figure 8: The output of the function isValidTau.
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3.2 get_supTau.m

supTau = get_supTau(sysEnv , udQcanon , ‘exact ’)
supTau = get_supTau(sysEnv , udQcanon , ‘approx ’, res)

This function returns the supremum τ∗ supTau such that for all 0 < τ < τ∗, the closed-loop system
with the DOB designed under Q(s; 1) is robustly stable.

• sysEnv is expected to be the output of the function setup_sys.

• The user-defined Q(s; 1) udQcanon that robustly stabilizes the fast dynamics of the closed-loop sys-
tem must be entered in the form of a transfer function model.

• For the option exact, at least 2018a and Symbolic Math Toolbox are required and the output supTau
becomes the (almost, in the sense of minor numerical errors) exact value of the supremum τ∗.

• For the option approx, the output supTau becomes an approximate value of the supremum τ∗. In
this case, the resolution res must be entered as a positive integer.

Figure 9 shows the output of the function get_supTau for each option.

Figure 9: The output of the function get_supTau.
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4 Verification
By the function get_supTau, it is figured out that, under Q(s; 1) = 0.5/(s3 + 2s2 + s+ 0.5) (Qcanon_1 in
Figure 6), the value of the supremum τ∗ such that for all 0 < τ < τ∗ the closed-loop system with DOB
is robustly stable, is 0.0232. The result can be verified by wcgain function of Robust Control Toolbox that
calculates the worst-case peak gain of a given uncertain system. Figure 10 shows that for τ = 0.0231, the
worst-case peak gain is bounded but Figure 11 shows that for τ = 0.0233, the worst-case peak gain has
infinite lower (or upper) bound.

Figure 10: The worst-case peak gain of the transfer function of r to y and d to y for τ = 0.0231.

Figure 11: The worst-case peak gain of the transfer function of r to y and d to y for τ = 0.0233.
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