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Abstract— As the disturbance observer (DOB)-based con-
troller has been widely applied in practice, various aspects
of the disturbance observer have been theoretically studied.
In particular, robust stability of the closed-loop system with
Q-filter-based DOB has been rigorously analyzed, and finally,
a necessary and sufficient condition for robust stability was
obtained under the premise that the bandwidth of Q-filter is
large. However, even the most recent study about the design of
Q-filter-based DOB for robust stability does not offer a practical
method for the determination of the Q-filter’s bandwidth. In this
paper, we present several lemmas regarding the determination
of the bandwidth, with which the linear closed-loop system
remains stable against arbitrarily large but bounded parametric
uncertainties. In particular, our study proposes a procedure to
determine the threshold such that robust stability is lost if the
bandwidth of the Q-filter becomes lower than the threshold.
The proposed procedure can also be used even for designing
the Q-filter-based DOB for non-minimum phase systems.

I. INTRODUCTION

The Q-filter-based disturbance observer (DOB) has been
a powerful robust control scheme to reject disturbances and
compensate plant uncertainties since it was first introduced
by [1]. The DOB has been frequently employed in the indus-
try from the time when it was regarded as a rather heuristic
method, and now several theories are available about the
robust stability of the DOB-based control systems. Among
others, [2] and [3] introduced singular perturbation theory
into the analysis of DOB-based control systems, and this
insight yielded a necessary and sufficient condition for robust
stability [4]. This finding, in turn, enabled the systematic
design of DOBs for robust stability against arbitrarily large
parameter variations.

Based on the robust stability result, more insights about the
DOB have been discovered. For instance, it was found that
a high-gain observer is already embedded in the seemingly
different structure of the Q-filter-based DOB and that the
zero-dynamics of the plant becomes decoupled when the
DOB is installed in the feedback loop [5]. This finding
provides an insightful explanation for how the DOB works
as a robust controller, by which both the benefits and the
limitations of DOB are clarified. It was also figured out how
imprecise identification of the relative degree of an uncertain
plant affects stability [6] and how the classical measure of
robustness, the gain/phase margin, is affected by a DOB in
the loop [7].
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Based on these analyses, a few modified DOBs are also
proposed to overcome the limitations of the classical DOB.
For example, a way to modify the classical DOB for robust
transient performance was presented in [3], and a way to
embed an internal model that generates external disturbances
so that the modeled disturbances are rejected perfectly while
the unmodeled disturbances are attenuated at the desired
level was presented in [8]. On top of those theoretical
developments, the DOB is replacing traditional robust control
methods. Examples include flight control of drones [9],
platooning of multi-vehicles [10], load-frequency control
of power-grid [11], robustifying the reinforcement learning
based controller [12], and even generating stealthy attacking
signals for control systems [13].

However, most of these results are based on the premise
that the bandwidth of the Q-filter is sufficiently large. For
example, the necessary and sufficient condition for robust
stability in [4] is derived when the time constant τ of the
Q-filter is less than a threshold τ∗. While the threshold τ∗

is presented in [4], it is just a conservative value, and in
practice, the selection of τ∗ should be obtained by a repeated
simulation or by trial and error.

In this paper, we study how to choose the minimum band-
width of Q-filter, i.e., the non-conservative value of τ∗, under
which robust stability is guaranteed against parameter uncer-
tainties within prescribed ranges. Having non-conservative τ∗

is desirable because there might exist unavoidable physical
constraints that limit the available bandwidth of the Q-filter.
The existence of unmodeled dynamics in the model of the
plant is another reason why we need to avoid unnecessarily
large bandwidth of Q-filter. Moreover, succinct computation
of τ∗ is desired, which does not rely on an iterative method.
In this paper, a few lemmas are presented with which exact
computation of τ∗ is enabled. This work will pave a road to
building a computer-aided toolbox for designing DOBs that
are robust against given uncertain variation of parameters.

Finally, it will be shown that the proposed procedure to
find the minimum bandwidth, or the value of τ∗, of the Q-
filter, can also be used for finding suitable bandwidths or the
values τ even for non-minimum phase plants. No universal
design methods of DOB for non-minimum phase plants are
available yet. However, since we are using a numerical
method whatsoever, DOB can be designed regardless of
whether the plant is of minimum phase or not.

This paper is organized as follows. An overview of the Q-
filter-based DOB is briefly explained in Section II. Section
III describes a couple of assumptions and primary results
of [4] as preliminary. In Section IV, we propose several
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Fig. 1. Block diagram of the closed-loop system with Q-filter-based DOB
(sky-blue dashed block).

Fig. 2. Block diagram of the nominal closed-loop system.

necessary and sufficient conditions for the robust stability
of the DOB-based control system as lemmas and then show
how we find an appropriate bandwidth of the Q-filter based
on the suggested lemmas. Some illustrative examples that
demonstrate the usefulness of the lemmas are given in
Section V. Finally, this paper is summarized and concluded
in Section VI.

II. OVERVIEW OF Q-FILTER-BASED DISTURBANCE
OBSERVER

The standard structure of the Q-filter-based DOB and the
closed-loop system are depicted in Fig. 1. In the figure, P(s)
and Pn(s) represent the real plant and its nominal model,
respectively, C(s) is a proper (implementable) controller
which is usually designed a priori for Pn(s), and Q(s;τ)
is a stable low-pass filter called Q-filter with a parameter
τ . This paper focuses on the design of the suitable value τ

that decides the time constant or the bandwidth of the Q-
filter for robust stability of the closed-loop system against
a given variation of uncertain parameters. It is well-known
that, if the reference r and disturbance d consist of low-
frequency components and if all other parameters of Q-filter
are properly set, then the Q-filter-based DOB with a large
bandwidth of the Q-filter (that is, a small magnitude of τ)
enables the system in Fig. 1 to approximate the nominal
closed-loop system in Fig. 2 (see, e.g., [5]). In other words,
the following approximation

y( jω)≈ Pn( jω)C( jω)

1+Pn( jω)C( jω)
r( jω) = yn( jω)

holds with a sufficiently large bandwidth of the Q-filter,
where y and yn are the outputs of the DOB-based control
system in Fig. 1 and the nominal closed-loop system in
Fig. 2, respectively. This capability of approximation is one
of the main features of the Q-filter-based DOB scheme,
which is often called nominal performance recovery.

III. PRELIMINARY

In this paper, parametric uncertainty of the plant P(s) is
assumed to satisfy the following.

Assumption 1: The real plant P(s) and its nominal model
Pn(s) belong to the set of uncertain plants:

P :=
{

P(s) =
βn−ν sn−ν +βn−ν−1sn−ν−1 + ...+β0

αnsn +αn−1sn−1 + ...+α0

: αi ∈ [α i,α i] ,βi ∈ [β
i
,β i]

}
,

(1)

where n and ν are positive integers such that n ≥ ν

and α i, α i, β
i
, and β i are known constants such that

[αn,αn], [β n−ν
,β n−ν ] ⊂ (0,∞), where (0,∞) denotes the

positive real line. �
In the assumption, the condition [αn,αn], [β n−ν

,β n−ν ]⊂
(0,∞) implies that all the plants in the set have the same
relative degree and have the same sign of the high frequency
gain (which is positive, without loss of generality). From the
assumption, it is clear that the set P incorporates arbitrarily
large but bounded uncertainties of the parameters. Note that
the description of the set P in (1) has redundancy. This
redundancy disappears by letting, for example, αn = αn = 1,
but for the general purpose, we let all the parameters are
independent of one another.

The stable low-pass filter Q(s;τ) is usually designed in
the form

Q(s;τ) =
ck(τs)k + ck−1(τs)k−1 + · · ·+ c0

(τs)l +al−1(τs)l−1 + · · ·+a1(τs)+a0

=:
NQ(s;τ)

DQ(s;τ)
,

(2)

where NQ and DQ indicates polynomials that are the numer-
ator and the denominator of Q(s;τ), respectively. The real
positive τ determines the time constant or the bandwidth,
a0 = c0 for the unity dc gain, and k and l are some non-
negative integers such that k≤ l−ν , where ν is the relative
degree of Pn(s). Furthermore, we assume the following nec-
essary condition (see [4]), which is relevant to Pn(s), C(s),
and Q(s;τ), for robust stability under large bandwidth of
Q-filter.

Assumption 2: The nominal closed-loop system PnC/(1+
PnC) is internally stable, and the polynomial

p f (s) := DQ(s;1)+

(
lim
s→∞

P(s)
Pn(s)

−1

)
NQ(s;1)

is Hurwitz for all P(s) ∈P in (1). �
Note that τ = 1 in the assumption, and thus, the assump-

tion is independent of the choice of τ . In fact, a systematic
way to choose the parameters ai and ci of the Q-filter in (2)
such that the second condition of Assumption 2 holds has
been presented in [4, Sec. 2.3].

The following theorem, taken from [4], plays a crucial
role to design Q-filter-based DOB for robust stability of the
closed-loop system in Fig. 1.

Theorem 1: Suppose that Assumptions 1 and 2 holds. If
all the plants P(s) ∈P are of minimum phase, then there
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exists a constant τ∗ such that, for all 0 < τ < τ∗, the closed-
loop system in Fig. 1 is robustly internally stable (against
the uncertainty of P).

On the contrary, if P contains a non-minimum phase plant
such that at least one zero has positive real parts, then there
is τ∗ such that, for all 0 < τ < τ∗, the closed-loop system is
not robustly internally stable. �

While the former part of Theorem 1 guarantees the exis-
tence of the threshold τ∗ (or, the minimum bandwidth of Q-
filter), its proof in [4] presents a conservative choice of τ∗.
In fact, no method to find the exact and non-conservative
value of τ∗ has been reported in the literature yet. In the
next section, some useful lemmas are introduced which can
be utilized to obtain the exact value of τ∗ under Assumptions
1 and 2.

IV. MAIN RESULT

In this section, we first discuss the characteristic polyno-
mial of the closed-loop system in Fig. 1, and then we provide
a couple of equivalent statements which are necessary and
sufficient conditions for robust stability of the DOB-based
control system. In addition, we present a procedure to
compute the value of τ∗ in Theorem 1 based on the given
lemmas and discuss the case when non-minimum phase
systems belong to the plant set P .

Let P(s), Pn(s), and C(s) be represented by the ratios
of coprime polynomials such as P(s) = N(s)/D(s), Pn(s) =
Nn(s)/Dn(s), and C(s) = NC(s)/DC(s). Then, it is well-
known that the following lemma holds [4].

Lemma 2: The closed-loop system in Fig. 1 is robustly
internally stable if and only if the characteristic polynomial

δ (s;τ) =
(

D(s)DC(s)+N(s)NC(s)
)

Nn(s)DQ(s;τ)

+NQ(s;τ)DC(s)
(

N(s)Dn(s)−Nn(s)D(s)
) (3)

is Hurwitz for all P(s) ∈P in (1). �
The characteristic polynomial δ (s;τ) is the main concern

throughout this paper. In the following subsection, a couple
of equivalent statements of Lemma 2 are presented.

A. Application of Edge Theorem and Bialas’ Theorem

Now, we are going to define ‘polytope of polynomials’,
‘edge polynomial’, and ‘exposed edge polynomial’ with
respect to δ (s;τ) in (3) to make use of the Edge theorem in
[14]. For a precise definition of such terminologies above, it
is recommended to refer to [14].

With uncertain polynomials D(s) and N(s), the character-
istic polynomial δ (s;τ) in (3) can be rewritten as

δ (s;τ) = pD(s;τ) ·D(s)+ pN(s;τ) ·N(s),

= pD(s;τ) ·
n

∑
i=0

αisi + pN(s;τ) ·
n−ν

∑
j=0

β js j,

where pD(s;τ) = DC(s)Nn(s)DQ(s;τ)−NQ(s;τ)DC(s)Nn(s)
and pN(s;τ) = NC(s)Nn(s)DQ(s;τ) + NQ(s;τ)DC(s)Dn(s)
which are not uncertain. At this point, we define

Ω := {δ (s;τ) : P(s) ∈P} (4)

as the set of all characteristic polynomials corresponding
to every possible plants P(s) ∈ P in (1). Then for each
α
(1)
i , α

(2)
i ∈ [α i,α i] and β

(1)
j , β

(2)
j ∈ [β

j
,β j], where i =

0, 1 · · · n and j = 0, 1, · · · n−ν , the polynomials

ω1 := pD(s;τ) ·
n

∑
i=0

α
(1)
i si + pN(s;τ) ·

n−ν

∑
j=0

β
(1)
j s j,

ω2 := pD(s;τ) ·
n

∑
i=0

α
(2)
i si + pN(s;τ) ·

n−ν

∑
j=0

β
(2)
j s j,

belong to Ω. Moreover, for any λ ∈ [0,1], the convex
combination

λω1 +(1−λ )ω2 = pD(s;τ) ·
n

∑
i=0

(
λα

(1)
i +(1−λ )α

(2)
i

)
si

+ pN(s;τ) ·
n−ν

∑
j=0

(
λβ

(1)
j +(1−λ )β

(2)
j

)
s j,

is also in Ω because λα
(1)
i + (1− λ )α

(2)
i ∈ [α i,α i] and

λβ
(1)
j +(1− λ )β

(2)
j ∈ [β

j
,β j]. Thus, the set Ω in (4) is a

polytope of polynomials, namely the convex hull of a finite
number of polynomials. Indeed, we have

m := 22n−ν+2

polynomials depending on α i, α i, β
j
, and β j, where i =

0, 1 · · · n and j = 0, 1, · · · n−ν , as

δ1(s;τ) := (αnsn +αn−1sn−1 + · · ·+α0) · pD(s;τ)

+(β
n−ν

sn−ν +β
n−ν−1

sn−ν−1 + · · ·+β
0
) · pN(s;τ),

δ2(s;τ) := (αnsn +αn−1sn−1 + · · ·+α0) · pD(s;τ)

+(β
n−ν

sn−ν +β
n−ν−1

sn−ν−1 + · · ·+β
0
) · pN(s;τ),

δ3(s;τ) := (αnsn +αn−1sn−1 + · · ·+α0) · pD(s;τ)

+(β
n−ν

sn−ν +β
n−ν−1

sn−ν−1 + · · ·+β
0
) · pN(s;τ),

...

δm(s;τ) := (αnsn +αn−1sn−1 + · · ·+α0) · pD(s;τ)

+(β n−ν sn−ν +β n−ν−1sn−ν−1 + · · ·+β 0) · pN(s;τ)

which are called ‘vertex polynomials’ of the polytope Ω,
and the polytope Ω is the convex hull of them. Let the set
of those vertex polynomials as

∆(s;τ) := {δi(s;τ) : i = 1, 2, · · · , m}.

With δi(s;τ), δ j(s;τ) ∈ ∆(s;τ), 1 ≤ i, j ≤ m, i 6= j, and
λ ∈ [0,1], let us call λδi(s;τ)+(1−λ )δ j(s;τ) by an ‘edge
polynomial’ of the polytope Ω.

Example 1: Consider an uncertain polynomial p(s) =
α2s2 + α1s + α0, where uncertain coefficients α2 ∈ [1,2],
α1 ∈ [3,4], and α0 ∈ [−1,3]. In this case, the polytope Ω can
be expressed as {p(s) = α2s2 +α1s+α0 : α2 ∈ [1,2],α1 ∈
[3,4],α0 ∈ [−1,3]}. There are 23 = 8 vertex polynomials for
this example. If we represent each polynomial in Ω as a point
in the coefficient space, which is three-dimensional space,
the vertex polynomials can be represented as a black dot in
Fig. 3. There are

(8
2

)
= 28 edge polynomials, which are line
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Fig. 3. The vertex polynomials (black dots) and exposed edge polynomials
(sky-blue line segments) of the polytope Ω in the coefficient space.

segments connecting each pair of black dots in Fig. 3. Out of
28 edge polynomials, only 12 edge polynomials are drawn
in sky-blue color in Fig. 3, which are called ‘exposed edge
polynomials’. For a formal definition of the exposed edge
polynomial, refer to [14]. �

Lemma 3: The closed-loop system in Fig. 1 is robustly
internally stable if and only if for each pair δi(s;τ), δ j(s;τ)∈
∆(s;τ), 1≤ i, j ≤ m, i 6= j, and for each λ ∈ [0,1], the edge
polynomial λδi(s;τ)+(1−λ )δ j(s;τ) is Hurwitz. �

Proof: The lemma follows from the Edge theorem [14],
which is stated as:

Let D ⊂ C be a simply connected domain in the
complex plane C, and let Ω be a polytope of
polynomials. Then the set of the roots of Ω

R(Ω) := {s : f (s) = 0, f ∈Ω} ⊂ C

is contained in D if and only if the collection of
the roots of all the exposed edge polynomials of
Ω is contained in D.

To prove Lemma 3, take D as the open left-half complex
plane. If all the edge polynomials are Hurwitz, then all
exposed edge polynomials are Hurwitz as well, and the
sufficiency follows. The necessity is straightforward.

It is worthy to note that δi(s;τ) ∈ ∆(s;τ) in Lemma 3 is
no longer an uncertain polynomial. However, we still need
to check infinitely many polynomials in terms of λ ∈ [0,1]
to decide the robust stability of the closed-loop system. The
following lemma eliminates the λ -dependency in Lemma 3.

Before stating the next lemma, let us define the Hurwitz
matrix of a polynomial. For a given polynomial p(s) =
ansn + an−1sn−1 + · · ·+ a1s + a0 with real coefficients, the

n×n matrix

H(p) =



an−1 an−3 an−5 · · · · · · · · · 0 0 0

an an−2 an−4
...

...
...

0 an−1 an−3
...

...
...

... an an−2
. . . 0

...
...

... 0 an−1
. . . a0

...
...

...
... an

. . . a1
...

...
...

... 0 a2 a0
...

...
...

... a3 a1
...

0 0 0 a4 a2 a0


is called Hurwitz matrix of the polynomial p(s). Moreover,
when an > 0, the polynomial p(s) is Hurwitz if and only
if all the leading principal minors of the matrix H(p) are
positive [15]. Therefore, if p(s) is Hurwitz, then |H(p)|> 0
so that H(p) is invertible.

Lemma 4: The closed-loop system in Fig. 1 is ro-
bustly internally stable if and only if, for all δi(s;τ) ∈
∆(s;τ), the polynomial δi(s;τ) is Hurwitz, and for each
pair δi(s;τ),δ j(s;τ) ∈ ∆(s;τ), no eigenvalues of the matrix
H−1(δi(s;τ))H(δ j(s;τ)) are located in the negative real axis
(−∞,0) in the complex plane. �

Proof: The proof uses Bialas’ theorem [16], which is
stated as follows:

Let two polynomials with real coefficients

f1(s) = a(1)n sn +a(1)n−1sn−1 + · · ·+a(1)0 ,

f2(s) = a(2)n sn +a(2)n−1sn−1 + · · ·+a(2)0 ,

where a(1)n ,a(2)n 6= 0, are Hurwitz. Then, the convex
combination λ f1(s) + (1 − λ ) f2(s), where λ ∈
[0,1], is Hurwitz if and only if no eigenvalues of
H−1( f1)H( f2) are located in the negative real axis
(−∞,0), where H is the Hurwitz matrix.

In our case, the degree of each δi(s;τ)∈∆(s;τ) is determined
only by the term D(s)DC(s)Nn(s)DQ(s;τ) in (3), and thus, its
leading coefficient is always nonzero. Therefore, the degrees
of all polynomials in the set ∆(s;τ) are equal, and Bialas’
theorem is ready to be applied.

Lemma 4 gives a necessary and sufficient condition on the
robust stability of the DOB-based control system for a given
τ , without the need to check infinitely many polynomials.
Now, with the help of Routh-Hurwitz stability criterion, one
can compute the exact value of τ∗ and the detailed procedure
is proposed in the next subsection.

B. Procedure for Computing τ∗

The following procedure is for both computation of τ∗

when the plant set P in (1) consists of only minimum phase
systems and choice of τ when the plant set P contains non-
minimum phase systems.

Step 1. For each δi(s;τ) ∈ ∆(s;τ), i = 1, · · · ,m, find the
largest range Ri ⊂ (0,∞) such that for all τ ∈ Ri, the
polynomial δi(s;τ) is Hurwitz.
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In particular, if the plant set P consists of only minimum
phase systems, existence of the largest τ i

1 (including the case
when τ i

1 =∞) such that (0,τ i
1)⊂Ri is guaranteed by Theorem

1. For the computation of Ri and τ i
1, one may employ Routh-

Hurwitz stability criterion (reviewed in the Appendix for
convenience).
Step 2. For each pair δi(s;τ),δ j(s;τ) ∈ ∆(s;τ), obtain the
largest range Ri j ⊂ (0,∞) such that for all τ ∈ Ri j, no
eigenvalues of H−1(δi(s;τ))H(δ j(s;τ)) are in (−∞,0).

Similar to the previous step, existence of the largest τ
i j
2

such that (0,τ i j
2 )⊂Ri j is also guaranteed by Theorem 1 when

the plant set P consists of only minimum phase systems.
For the computation of Ri j and τ

i j
2 , one may employ Sturm’s

theorem, which is described in the Appendix.
Step 3. If the plant set P consists of only minimum phase
systems, let τ∗ = mini, j{τ i

1,τ
i j
2 } ≤ ∞. Otherwise, let τ∗ be

the largest τ̄ ≤ ∞ such that (0, τ̄)∩ R∗ = /0, where R∗ :=
(
⋂

i Ri)∩ (
⋂

i, j Ri j) and /0 denotes the empty set.
For the case where the plant set P contains non-minimum

phase systems, Theorem 1 guarantees the existence of such τ̄ .
In fact, one can choose any τ ∈ R∗ in order that the Q-filter-
based DOB works for a given non-minimum phase plant.
Even though R∗ might be the empty set so that τ∗ = ∞ and
the closed-loop system is not robustly internally stable for all
τ > 0, one can at least demonstrate if a given real plant set
that contains non-minimum phase plant is suitable to employ
the Q-filter-based DOB or not.

In the following section, illustrative examples that show
the advantages of the proposed computation procedure are
given.

V. NUMERICAL EXAMPLES

In this section, two numerical examples are presented to
describe the utility of the proposed computation procedure.

Example 2: It is assumed that in Fig. 1,
• C(s) = 2/(s+4),
• Pn(s) = 5/(s−2),
• P(s) = β0/(s+α0), where 4≤ β0 ≤ 10, −10≤ α0 ≤ 10,
• Q(s;τ) = 1/(τs+1).

It is obvious that the given P consists of only minimum
phase systems since there is no zero-dynamics. Let us
partially go through the computation procedure. There are
four vertex polynomials,

δ1(s;τ) = 5τs3 +(−30τ +4)s2 +(−160τ +8)s+8,

δ2(s;τ) = 5τs3 +(70τ +4)s2 +(240τ +8)s+8,

δ3(s;τ) = 5τs3 +(−30τ +10)s2 +(−100τ +20)s+20,

δ4(s;τ) = 5τs3 +(70τ +10)s2 +(300τ +20)s+20.

First, the largest τ1
1 > 0 with which δ1(s;τ) is Hurwitz for all

τ ∈ (0,τ1
1 ) is computed as 0.0457 by Routh-Hurwitz stability

criterion. Secondly, the largest τ34
2 > 0, such that for all τ ∈

(0,τ34
2 ), no eigenvalues of H−1(δ3(s;τ))H(δ4(s;τ)) are in

(−∞,0), is calculated as 0.1667 by Sturm’s theorem. In fact,

τ
∗ = min

i, j
{τ i

1,τ
i j
2 }= 0.0457.

Fig. 4. Nominal performance recovery with P(s) = s2−0.2s+5
s3+3s2+3s+1 for τ =

0.21.

The result can be verified by wcgain function (that cal-
culates the worst-case peak gain of given uncertain system)
in MATLAB and it is observed that for τ = 0.0458, transfer
functions of r to y and d to y can have infinite gain because of
the plant uncertainty. On the other hand, gains of the same
transfer functions for τ = 0.0456, are bounded despite the
plant uncertainty. �

Example 3: Suppose that in Fig. 1,
• C(s) = 1/(s+1),
• Pn(s) = (s2 + s+5)/(s3 +3s2 +3s+1),
• P(s) = (s2 +β1s+5)/(s3 +3s2 +3s+1),

where −0.2≤ β1 ≤ 2,
• Q(s;τ) = 1/(τs+1).

Although the given set P contains non-minimum phase
systems, the procedure provides that the closed-loop system
with Q-filter-based DOB is robustly internally stable at least
for τ ∈ (0.206,0.627)⊂ R∗.

For r(t) = 1(t) (i.e., Heaviside step function) and d(t) =
2sin(0.1t), the following Fig. 4 and 5 show the stability
of the closed-loop system and nominal performance recov-
ery with two different real plant models for τ = 0.21. It
is observed that the closed-loop system is robustly stable
regardless of non-minimum phaseness of the system and the
nominal performance recovery is achieved to some extent.
On the other hand, if the value of τ gets smaller and even out
of the given range (0.206, 0.627), we expect that there exist
some P(s) ∈P , such that the closed-loop system with P(s)
is not internally stable. As was expected, Fig. 6 demonstrates
that the closed-loop system with P(s) = (s2−0.2s+3)/(s3+
3s2 +3s+1) is unstable for τ = 0.16. �

VI. CONCLUDING REMARKS

In this paper, several lemmas on necessary and sufficient
condition for robust stability of the DOB-based control sys-
tem were presented and the design of the Q-filter-based DOB
including computation of minimum bandwidth of the Q-filter
was proposed. Additionally, it was noted that, contrary to the
past belief, we can exploit the existing Q-filter-based DOB
scheme as it is with non-minimum phase plants even without
modifying the standard structure of the Q-filter-based DOB.

In fact, if the computation procedure introduced in Section
IV is implemented impeccably, then a tool that gives the
exact value of τ∗ for a given system environment can be
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Fig. 5. Nominal performance recovery with P(s) = s2+2s+5
s3+3s2+3s+1 for τ =

0.21.

Fig. 6. Unstable closed-loop system with P(s) = s2−0.2s+5
s3+3s2+3s+1 for τ = 0.16.

suggested as in [17], where a MATLAB toolbox named
‘DO-DAT’ is introduced. Some of the main results of this
paper will be included in the feature of DO-DAT as soon as
possible.

APPENDIX

Routh-Hurwitz stability criterion [18]: Let p(s) =
ansn+an−1sn−1+ · · ·+a1s+a0 be a polynomial of degree n.
The Routh-Hurwitz table of p(s) can be made up as follows:

an an−2 an−4 . . .
an−1 an−3 an−5 . . .
b1 b2 b3 . . .
c1 c2 c3 . . .
...

...
...

. . .

where

bi =
an−1an−2i−anan−(2i+1)

an−1
, ci =

b1an−(2i+1)−an−1bi+1

b1
,

for i = 1,2, · · · . Then, the number of sign changes in the first
column of the Routh-Hurwitz table of p(s) is equal to the
number of roots with non-negative real part of p(s).

Sturm’s theorem [19]: Let p(s) be a polynomial with real
coefficients and define

p0(s) := p(s),

p1(s) := p′(s),

pi+1(s) :=− rem(pi−1(s), pi(s)), i = 1,2, . . .

where p′(s) is the derivative of p(s) and rem(pi−1(s), pi(s))
represents the remainder of the division of pi−1(s) by pi(s).

Then, the sequence of polynomials p0, p1, . . . is called Sturm
sequence of p(s), which is a finite sequence. Let #(ζ , p) be
the number of sign changes in the Sturm sequence of p(s)
at s = ζ ∈R. Then, the number of distinct real roots of p(s)
in the interval (a,b] of the real axis is equal to

#(a, p)−#(b, p).

In order to apply Sturm’s theorem for the interval (−∞,0),
one has to compute #(−∞, p). The sign of a polynomial p(s)
at s = −∞ is defined as the sign of the leading coefficient,
if p(s) has even degree, and the opposite sign of the leading
coefficient, if p(s) has odd degree.
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